Entrance and Temperature Dependent Viscosity Effects on Laminar Forced Convection in Straight Ducts With Uniform Wall Heat Flux

Author:

Giudice Stefano Del,Savino Stefano,Nonino Carlo1

Affiliation:

1. Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica, Università degli Studi di Udine, Via delle Scienze 208, 33100 Udine, Italy

Abstract

Abstract In this paper a parametric investigation is carried out on the effects of temperature dependent viscosity in simultaneously, i.e., hydro-dynamically and thermally, developing laminar flows of liquids in straight ducts of constant cross sections. Uniform heat flux boundary conditions are imposed on the heated walls of the ducts. Different cross-sectional geometries are considered, corresponding to both axisymmetric (circular and concentric annular) and three-dimensional (rectangular and trapezoidal) ducts. Viscosity is assumed to vary with temperature according to an exponential relation, while the other fluid properties are held constant. A finite element procedure is employed for the solution of the parabolized momentum and energy equations. Computed axial distributions of the local Nusselt number and of the apparent Fanning friction factor are presented for different values of the Pearson and Prandtl numbers. Numerical results confirm that, in the laminar forced convection in the entrance region of straight ducts, the effects of temperature dependent viscosity cannot be neglected in a wide range of operative conditions. Correlations are also provided for the local Nusselt number and the apparent Fanning friction factor in simultaneously developing flows in ducts of different cross sections.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference29 articles.

1. Laminar Convective Heat Transfer in Ducts;Shah

2. The Effect of Temperature-Dependent Fluid Properties on Convective Heat Transfer;Kakaç

3. Temperature Dependent Viscosity Effects on Laminar Forced Convection in the Entrance Region of Straight Ducts;Nonino;Int. J. Heat Mass Transfer

4. Effects of Temperature-Dependent Viscosity on Forced Convection Inside a Porous Medium;Hooman;Transp. Porous Med.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3