Affiliation:
1. Department of Mechanical Engineering, KAIST, 373-1, Guseong-Dong, Yuseong-Gu, Daejeon, 305-701, Republic of Korea
Abstract
This paper studies the heat and mass transfer characteristics in a steam reforming reactor using numerical simulation and investigates the operating parameters for effective hydrogen production. Simultaneous analysis of governing equations and chemical reaction equations is carried out in a multiphysical simulation. The major reactions are assumed to be the steam reforming, water-gas shift (WGS), and direct steam reforming reactions. The temperature and species concentrations measured for the experiment are compared with numerical results. After validation of the developed code, numerical work is carried out to study correlations between the performance and operating parameters, which are the wall temperature, the inlet temperature, the steam to carbon ratio (SCR), and the gas hourly space velocity (GHSV). The fuel conversion increases with the high wall temperature due to the increased heat transfer. The inlet temperature may not affect the fuel conversion, if the reformer length is long enough. However, the heat transfer limitation can occur near the inlet when the inlet temperature is over 300 °C. The concentration of carbon monoxide becomes lower with increasing SCR due to the decreased WGS reaction rate. The high GHSV causes the short residence time and it is the reason for the low fuel conversion.
Subject
Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献