A Distance Metric for Finite Sets of Rigid-Body Displacements via the Polar Decomposition

Author:

Larochelle Pierre M.1,Murray Andrew P.2,Angeles Jorge3

Affiliation:

1. Mechanical & Aerospace Engineering Department, Florida Institute of Technology, Melbourne, FL 32901-6975

2. Mechanical & Aerospace Engineering Department, University of Dayton, Dayton, OH 45469-0238

3. Department of Mechanical Engineering, McGill University, Montreal, Quebec, H3A 2A7 Canada

Abstract

An open research question is how to define a useful metric on the special Euclidean group SE(n) with respect to: (1) the choice of coordinate frames and (2) the units used to measure linear and angular distances that is useful for the synthesis and analysis of mechanical systems. We discuss a technique for approximating elements of SE(n) with elements of the special orthogonal group SO(n+1). This technique is based on using the singular value decomposition (SVD) and the polar decompositions (PD) of the homogeneous transform representation of the elements of SE(n). The embedding of the elements of SE(n) into SO(n+1) yields hyperdimensional rotations that approximate the rigid-body displacements. The bi-invariant metric on SO(n+1) is then used to measure the distance between any two displacements. The result is a left invariant PD based metric on SE(n).

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference31 articles.

1. Object Norms: A Class of Coordinate and Metric Independent Norms for Displacements;Kazerounian

2. Planar Motion Synthesis Using an Approximate Bi-invariant Metric;Larochelle;ASME J. Mech. Des.

3. Approximating Spatial Locations with Spherical Orientations for Spherical Mechanism Design;Tse;ASME J. Mech. Des.

4. Measures of Positional Error for a Rigid Body;Gupta;ASME J. Mech. Des.

5. Distance Metrics on the Rigid-body Motions with Applications to Mechanism Design;Park;ASME J. Mech. Des.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SimpleEgo: Predicting Probabilistic Body Pose from Egocentric Cameras;2024 International Conference on 3D Vision (3DV);2024-03-18

2. Constructing Kinematic Confidence Regions with Double Quaternions;Mechanisms and Machine Science;2024

3. Metrics proposed for measuring the distance between two rigid-body poses: review, comparison, and combination;Robotica;2023-10-23

4. Position accuracy criteria for planar flexural hinges;Precision Engineering;2023-03

5. Solving the point cloud registration based on deep learning;2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA);2023-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3