A Detailed Three-Dimensional Simulation of an IP-SOFC Stack

Author:

Haberman B. A.1,Young J. B.1

Affiliation:

1. Hopkinson Laboratory, Engineering Department, Cambridge University, Cambridge CB2 1PZ, UK

Abstract

A typical integrated-planar solid oxide fuel cell (IP-SOFC) consists of modules with series connected electrochemical cells printed on their outer surfaces. Oxygen is supplied to the cathodes from air flowing over the outside of the module and hydrogen diffuses from the internal fuel channels to the anodes through the porous module support structure. The IP-SOFC is intended for use in medium scale stationary power applications, and such a system will use a fuel cell stack containing many thousands of modules housed inside a pressure vessel. For certain purposes, the geometry of this stack can be adequately described using a computational domain that considers just two modules. A computer code has been developed to simulate the many physical and chemical processes occurring within the stack, including fluid flow, heat transfer, water gas shift, and electrochemical reactions. The simulation results show how the performance of the IP-SOFC stack is strongly affected by these physical processes, the geometry of the stack, and the operating conditions. The temperature distribution, which is difficult to predict using a less realistic geometric model, is almost uniform within each fuel channel and rises steadily in the air flow direction. The shift reaction, which is catalyzed by the anodes, is of great importance, and as the fuel flow becomes depleted of hydrogen it enables the electrochemical cells to make increasing use of carbon monoxide. Overall it was found that the operating voltage produced by the fuel cells is typically 0.74V and the component efficiency, the ratio of the actual power output to the maximum available from the fuels consumed, is around 59%.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3