Boundary Integral Equations in Aerodynamics

Author:

Morino Luigi1

Affiliation:

1. Dipartimento di Meccanica e Automatica, La Terza Universita` di Roma, Rome, Italy

Abstract

A review of the use of boundary integral equations in aerodynamics is presented, with the objective of addressing what has been accomplished and, even more, what remains to be done. The paper is limited to aerodynamics of aeronautical type, with emphasis on unsteady flows (incompressible and compressible, potential and viscous). For potential flows, both incompressible and compressible flows are considered; the issue of the boundary conditions on the wake and on the trailing edge are addressed in some detail (in particular, some unresolved issues related to the impulsive start are pointed out). For incompressible viscous flows, the use of boundary integral equations in the non-primitive variable formulation are addressed: the Helmholtz decomposition and a decomposition recently introduced (and here referred to as the Poincare´ decomposition) are presented, along with their relationship. The latter is used to examine the relationship between potential and attached viscous flows (in particular, it is shown how the Poincare´ representation, for vortex layers of infinitesimal thickness, reduces to the potential-flow representation). The extension to compressible flows is also briefly outlined and the relative advantages of the two decompositions are discussed. Throughout the paper the emphasis is on the derivation and the interpretation of the boundary integral equations; issues related to the discretization (ie, panel methods, boundary element methods) are barely addressed. For numerical results, which are not included here, the reader is referred to the original references.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3