Nonlinear Wear Response of WC-Ni Cemented Carbides Irradiated by High-Intensity Pulsed Ion Beam

Author:

Zhu X. P.,Zhang F. G.,Song T. K.,Lei M. K.1

Affiliation:

1. e-mail:  Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

Surface hardening on WC-Ni cemented carbides was achieved by high-intensity pulsed ion beam (HIPIB) irradiation, with formation of a binderless, densified, and “hilly” remelted top layer of a few μm in depth and a shock strengthened underlayer down to a hundred μm. The tribological behavior of the samples was studied under dry sliding against GCr15 bearing steel on a block-on-ring tribometer with 98 N and 0.47 m/s. The specific wear rate/wear resistance presented an exponential dependence on the surface hardness, in contrast to the commonly reported linear dependence of the specific wear rate or wear resistance on the hardness of WC based cemented carbides among both WC-Ni and WC-Co systems. The original samples underwent a severe abrasive wear due to the Ni binder micro-abrasion and WC grain fragmentation/pullout, whereas the irradiated samples began with a gradual abrasion of the binderless hard tops, followed by a mild abrasive wear accompanied by local adhesive wear. The wear resistance has been also compared with the reported data concerning the relative hardness of friction pairs in a value range of 2–7 on block-on-ring tribometer tests with the friction pairs of WC cemented carbides and steels in unlubricated condition. The nonlinear wear response is explained by the wear mechanism transition otherwise unobtainable in the case of the reported hardening by either lowering the binder content or refining the WC grains. It is revealed that the interfacial bonding enhancement of the WC/binder and the binder strengthening are pronounced for improving the wear resistance of the cemented carbides, by the effective suppressing of the WC grain fragmentation/pullout and binder micro-abrasion, even though they have limited contribution to the hardness enhancement.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3