Wave Intensity Analysis of Left Ventricular Filling

Author:

Lanoye L. L.1,Vierendeels J. A.2,Segers P.1,Verdonck P. R.1

Affiliation:

1. Hydraulics Laboratory, Institute of Biomedical Technology, Ghent University, Belgium

2. Department of Flow, Heat and Combustion Mechanics, Ghent University, Belgium

Abstract

Wave intensity analysis (WIA) is a powerful technique to study pressure and flow velocity waves in the time domain in vascular networks. The method is based on the analysis of energy transported by the wave through computation of the wave intensity dI=dPdU, where dP and dU denote pressure and flow velocity changes per time interval, respectively. In this study we propose an analytical modification to the WIA so that it can be used to study waves in conditions of time varying elastic properties, such as the left ventricle (LV) during diastole. The approach is first analytically elaborated for a one-dimensional elastic tube-model of the left ventricle with a time-dependent pressure-area relationship. Data obtained with a validated quasi-three dimensional axisymmetrical model of the left ventricle are employed to demonstrate this new approach. Along the base-apex axis close to the base wave intensity curves are obtained, both using the standard method and the newly proposed modified method. The main difference between the standard and modified wave intensity pattern occurs immediately after the opening of the mitral valve. Where the standard WIA shows a backward expansion wave, the modified analysis shows a forward compression wave. The proposed modification needs to be taken into account when studying left ventricular relaxation, as it affects the wave type.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference24 articles.

1. Arterial Stiffness, Wave Reflections, and the Risk of Coronary Artery Disease;Weber;Circulation

2. Haemodynamic Basis for the Development of Left Ventricular Failure in Systolic Hypertension and for its Logical Therapy;Westerhof;J. Hypertens.

3. Mechanical Principles. Arterial Stiffness and Wave Reflection;O’Rourke;Pathol. Biol. (Paris)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3