A Cyclic-Plasticity-Based Mechanistic Approach for Fatigue Evaluation of 316 Stainless Steel Under Arbitrary Loading

Author:

Barua Bipul1,Mohanty Subhasish2,Listwan Joseph T.1,Majumdar Saurindranath1,Natesan Krishnamurti1

Affiliation:

1. Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439

2. Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 e-mail:

Abstract

In this paper, a cyclic-plasticity-based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress–strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S∼N curve-based fatigue evaluation approaches. Previously, we presented constant amplitude fatigue test based related material models for 316 stainless steel (SS) base, 508 low alloy steel base, and 316 SS-316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data-based models have limitation in capturing the stress–strain evolution under arbitrary fatigue loading. To address the aforementioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress–strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy (APSE)) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference52 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3