Affiliation:
1. University of California, Lawrence Livermore Laboratory, Livermore, Calif. 94550
Abstract
With its underground explosion computer codes SOC and TENSOR, the Lawrence Livermore Laboratory is developing a capability for computer code prediction of fracture intensity and permeability enhancement far from a free face. Because the codes calculate fracture and not permeability, one must relate experimental measurements to a calculable parameter for fracture. High-explosive experiments in a coal outcrop and a multiple-charge experiment in a coal seam were designed to provide the needed data. Fracture intensity observed around the explosion centers is shown to be related to a calculated damage parameter εf. This parameter is actually the total failure-induced deviatoric strain. Intrinsic permeability, determined from hydraulic conductivity and calculated from results from slug tests in wells near the explosion, correlates at least qualitatively with the calculated residual tensile-fracture porosity, πf. An important observation is that no tensile failure occurs for some distance from the explosion-formed cavity when spherical charges are employed, whereas, tensile failure occurs near the cavity wall when cylindrical charges are used.
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献