Affiliation:
1. Dept. of Production Engineering, Korea Advanced Institute of Science and Technology (KAIST), Seoul, Korea
Abstract
Optimization procedures to install a viscoelastic dynamic damper into a single degree of freedom primary system is briefly reviewed. Excitation methods are shown to identify elastic modulus and loss factor of a viscoelastic material at given prestrain, which are needed in the optimum design of the damper. An optimum-designed damper is attached on the toolpost of a lathe and its excellent chatter-suppressing effects are observed under six cutting conditions in terms of integrated power of the accelerations around the chatter frequency. Because one of the resonance frequencies responsible for the chatter varies depending upon the location of the carriage on the sliding surface, the prestrain of the viscoelastic element, which is initially optimum-tuned and damped at a location of the carriage, is readjusted for optimum tuning at the other locations. The effects of the readjustment are discussed in terms of the reduction of structural compliances and magnitudes of chatter vibrations.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献