Understanding Design Decisions Under Competition Using Games With Information Acquisition and a Behavioral Experiment

Author:

Panchal Jitesh H.1,Sha Zhenghui2,Kannan Karthik N.3

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 e-mail:

2. Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701 e-mail:

3. Krannert School of Management, Purdue University, West Lafayette, IN 47907 e-mail:

Abstract

The primary motivation in this paper is to understand decision-making in design under competition from both prescriptive and descriptive perspectives. Engineering design is often carried out under competition from other designers or firms, where each competitor invests effort with the hope of getting a contract, attracting customers, or winning a prize. One such scenario of design under competition is crowdsourcing where designers compete for monetary prizes. Within existing literature, such competitive scenarios have been studied using models from contest theory, which are based on assumptions of rationality and equilibrium. Although these models are general enough for different types of contests, they do not address the unique characteristics of design decision-making, e.g., strategies related to the design process, the sequential nature of design decisions, the evolution of strategies, and heterogeneity among designers. In this paper, we address these gaps by developing an analytical model for design under competition, and using it in conjunction with a behavioral experiment to gain insights about how individuals actually make decisions in such scenarios. The contributions of the paper are two-fold. First, a game-theoretic model is presented for sequential design decisions considering the decisions made by other players. Second, an approach for synergistic integration of analytical models with data from behavioral experiments is presented. The proposed approach provides insights such as shift in participants' strategies from exploration to exploitation as they acquire more information, and how they develop beliefs about the quality of their opponents' solutions.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference48 articles.

1. Value-Based Global Optimization;ASME J. Mech. Des.,2014

2. An Investigation Into the Decision Analysis of Design Process Decisions;ASME J. Mech. Des.,2010

3. A Value-of-Information Based Approach to Simulation Model Refinement;Eng. Optim.,2008

4. The Bayesian Approach to Local Optimization,1989

5. Using Crowds in Engineering Design—Towards a Holistic Framework,2015

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3