Impact of the Purge Flow Density Ratio on the Rim Sealing Effectiveness in Hot Gas Ingestion Measurements

Author:

Orsini L.1,Picchi A.1,Facchini B.1,Bonini A.2,Innocenti L.2

Affiliation:

1. University of Florence DIEF – Department of Industrial Engineering of Florence, , via S. Marta 3, 50139 Florence , Italy

2. Baker Hughes , Via Felice Matteucci 2, 50127 Florence , Italy

Abstract

Abstract The rim seals of gas turbines are used to control the ingestion of hot mainstream gas into the wheel space between the rotor disk and the stationary casing. Sealing air, which is generally used to pressurize the cavity space, flows through the seal clearance and then mixes with the flow path in the annulus. Predicting the correct quantity of purge flow necessary to prevent excessive ingestion of hot gases while, at the same time, minimizing the penalties in terms of engine efficiency and stage aerodynamics represents a great challenge for the designers and a crucial point for the design of reliable engines. Such estimate is governed by unsteady phenomena, and computational fluid dynamics (CFD) approaches are still expensive and time consuming, especially if 3D domains and unsteady conditions have to be simulated. Fundamental test cases, replicating actual engines geometries, are still a valid approach to calibrate correlations or simplified models such as the so-called orifice model. However, most of the experimental studies deal with test rigs at room temperature and do not take into account the effect of the density ratio (DR) between purge and main flows. To fill this gap, the present article reports the impact of the density ratio on the rim sealing effectiveness by performing a nonintrusive diagnostic based on the pressure-sensitive paint (PSP) technique on both the stator side and the rotor side. The analysis was performed on a cold rotating cavity rig, developed for the study of hot gas ingestion, where two different values of density ratios were tested by using N2 (DR = 1) and CO2 (DR = 1.52) as purge flow. The data extracted from the PSP seal effectiveness maps allowed to calibrate the orifice model for the stator side and to fit the coefficients of the buffer ratio model for the rotor surface at different flow conditions where the externally induced ingress is the dominant mechanism for gas ingestion. The results highlighted the impact of the DR on the seal effectiveness and on the low-order models considered for the data analysis. In the end, it is shown that the obtained results can be used to scale experimental data, generally collected at DR close to one, toward more representative engine values where the difference between the density of purge and main flows cannot be neglected.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3