Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficency in Axial Turbines

Author:

Ameri A. A.1,Steinthorsson E.2,Rigby D. L.3

Affiliation:

1. AYT Corporation, Brook Park, OH 44142

2. Institute for Computational Mechanics in Propulsion (ICOMP), NASA Lewis Research Center, Cleveland, OH 44135

3. NYMA, Inc., NASA Lewis Group, Cleveland, OH 44135

Abstract

Calculations were performed to assess the effect of the tip leakage flow on the rate of heat transfer to blade, blade tip, and casing. The effect on exit angle and efficiency was also examined. Passage geometries with and without casing recess were considered. The geometry and the flow conditions of the GE-E3 first-stage turbine, which represents a modern gas turbine blade, were used for the analysis. Clearance heights of 0, 1, 1.5, and 3 percent of the passage height were considered. For the two largest clearance heights considered, different recess depths were studied. There was an increase in the thermal load on all the heat transfer surfaces considered due to enlargement of the clearance gap. Introduction of recessed casing resulted in a drop in the rate of heat transfer on the pressure side, but the picture on the suction side was found to be more complex for the smaller tip clearance height considered. For the larger tip clearance height, the effect of casing recess was an orderly reduction in the suction side heat transfer as the casing recess height was increased. There was a marked reduction of heat load and peak values on the blade tip upon introduction of casing recess; however, only a small reduction was observed on the casing itself. It was reconfirmed that there is a linear relationship between the efficiency and the tip gap height. It was also observed that the recess casing has a small effect on the efficiency but can have a moderating effect on the flow underturning at smaller tip clearances.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3