Multivariate Design and Analysis of Aircraft Heat Exchanger Under Multiple Working Conditions Within Flight Envelope

Author:

Liu Qihang12,Xu Guoqiang3,Wen Jie42,Fu Yanchen42,Zhuang Laihe12,Dong Bensi42

Affiliation:

1. National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics; School of Energy and Power Engineering, Beihang University, Beijing 100191, China;

2. Beihang Hangzhou Innovation Institute Yuhang, Hangzhou 310023, China

3. National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics; School of Energy and Power Engineering; Research Institute of Aero-Engine, Beihang University, Beijing 100191, China

4. National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics; Research Institute of Aero-Engine, Beihang University, Beijing 100191, China;

Abstract

Abstract This paper presents a multi-condition design method for the aircraft heat exchanger (HEX), marking with lightweight, compactness, and wide range of working conditions. The quasi-traversal genetic algorithm (QT-GA) method is introduced to obtain the optimal values of five structural parameters including the height, the tube diameter, the tube pitch, and the tube rows. The QT-GA method solves the deficiency of the conventional GA in the convergence, and gives a clear correlation between design variables and outputs. Pressure drops, heat transfer, and the weight of the HEX are combined in a single objective function of GA in the HEX design, thus the optimal structure of the HEX suitable for all the working conditions can be directly obtained. After optimization, the weight of the HEX is reduced to 2.250 kg, more than 20% lower than a common weight of around 3 kg. Based on the optimal structure, the off-design performance of the HEX is further analyzed. Results show that the extreme working conditions for the heat transfer and the pressure drops are not consistent. It proves the advance of the multi-condition design method over the traditional single-condition design method. In general, the proposed QT-GA design method is an efficient way to solve the multi-condition problems related to the aircraft HEX or other energy systems.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3