A Two-Dimensional Analysis of a Heated Free Jet at Low Reynolds Numbers

Author:

Krishnan S.1,Glicksman L. R.1

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Mass.

Abstract

To spin polymers and glass into continuous fibers, hot molten material is made to flow through a nozzle into air, thus forming a free liquid jet. This cools as it proceeds through the air and the solid fiber is collected on a rotating drum. This maintains a tension on the jet causing it to attenuate as it cools. An approximate integral technique is presented to investigate the relative importance of two-dimensional fluid mechanics for a variable viscosity glass jet in the region of the jet within four to five nozzle diameters of the nozzle exit. The results, when compared with those of an existing analysis based on one-dimensional velocity and temperature profiles, indicate that two-dimensional fluid dynamic effects exert very little influence on the jet shape while small changes in the temperature distribution cause significant changes in the jet behavior. A limited number of experiments performed with a chlorinated polymer provided a very simple and inexpensive means of modeling glass flow and also served to verify the results of the existing analysis over a different range of property values as compared to glass.

Publisher

ASME International

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3