Performance Efficiency of a Crash Energy Management System

Author:

Carolan Michael1,Tyrell David1,Perlman A. Benjamin2

Affiliation:

1. Volpe National Transportation Systems Center, Cambridge, MA

2. Tufts University, Medford, MA

Abstract

Previous work has led to the development of a crash energy management (CEM) system designed to distribute crush throughout unoccupied areas of a passenger train in a collision event. This CEM system is comprised of crush zones at the front and rear ends of passenger railcars. With a consist made up of CEM-equipped cars, the structural crush due to a collision can be distributed along the length of the train, crushing only unoccupied areas and improving the train’s crashworthy speed as compared with a conventional train in a similar collision. This paper examines the effectiveness of one particular CEM system design for passenger rail cars. The operating parameters of the individual components of the CEM system are varied, and this paper analyzes the effects of these variations on the behavior of the consist during a collision. The intention is to determine what modifications to the components, if any, could improve the crashworthiness of passenger railcars beyond the baseline CEM design without introducing new hazards to passengers. A one-dimensional, lumped-mass model of a passenger train impacting a heavy freight train was used in this investigation. Using this model of a collision, the force-crush behavior for each end of each car in the impacting consist was varied. The same force-crush characteristic was applied to each car end on the passenger train. The four components of the CEM system investigated were the draft gear, pushback coupler, primary energy absorbers, and occupied volume of the train car. The paper presents selected parameters of particular interest, such as the strength ratio of the primary energy absorber to the pushback coupler and the average strength of the occupied volume. The objective of this work was to ascertain the sensitivities of the various parameters on the crashworthy speed and to help optimize the force-crush characteristic. This investigation determined that modifications could be made to the baseline characteristic to improve the train’s crashworthy speed without creating new hazards to occupants.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Out-of-plane mechanical properties of Nomex® honeycomb with embedded aluminum tubes;Mechanics of Advanced Materials and Structures;2023-11-14

2. Study on energy absorption characteristics of expansion tube with light magnesium alloy;Mechanics Based Design of Structures and Machines;2022-08-30

3. Crashworthiness of passenger rail vehicles: a review;International Journal of Crashworthiness;2019-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3