Power Law Velocity Profile in the Turbulent Boundary Layer on Transitional Rough Surfaces

Author:

Afzal Noor1

Affiliation:

1. Faculty of Engineering, Aligarh University, Aligarh 202002, India

Abstract

A new approach to scaling of transitional wall roughness in turbulent flow is introduced by a new nondimensional roughness scale ϕ. This scale gives rise to an inner viscous length scale ϕν∕uτ, inner wall transitional variable, roughness friction Reynolds number, and roughness Reynolds number. The velocity distribution, just above the roughness level, turns out to be a universal relationship for all kinds of roughness (transitional, fully smooth, and fully rough surfaces), but depends implicitly on roughness scale. The open turbulent boundary layer equations, without any closure model, have been analyzed in the inner wall and outer wake layers, and matching by the Izakson-Millikan-Kolmogorov hypothesis leads to an open functional equation. An alternate open functional equation is obtained from the ratio of two successive derivatives of the basic functional equation of Izakson and Millikan, which admits two functional solutions: the power law velocity profile and the log law velocity profile. The envelope of the skin friction power law gives the log law, as well as the power law index and prefactor as the functions of roughness friction Reynolds number or skin friction coefficient as appropriate. All the results for power law and log law velocity and skin friction distributions, as well as power law constants are explicitly independent of the transitional wall roughness. The universality of these relations is supported very well by extensive experimental data from transitional rough walls for various different types of roughnesses. On the other hand, there are no universal scalings in traditional variables, and different expressions are needed for various types of roughness, such as inflectional roughness, monotonic roughness, and others. To the lowest order, the outer layer flow is governed by the nonlinear turbulent wake equations that match with the power law theory as well as log law theory, in the overlap region. These outer equations are in equilibrium for constant value of m, the pressure gradient parameter, and under constant eddy viscosity closure model, the analytical and numerical solutions are presented.

Publisher

ASME International

Subject

Mechanical Engineering

Reference70 articles.

1. Nikuradse, J. , 1932, “Laws of Turbulent Flow in Smooth Pipes,” VDI, Forschungsheft N-356 (English Translation NACA TTF-10, p. 359).

2. Scaling Laws for Fully Developed Turbulent Shear Flows, Part I: Basic Hypothesis and Analysis;Barenblatt;J. Fluid Mech.

3. Kailasnath, P. , 1993, “Reynolds Number Effect and the Momentum Flux in Turbulent Boundary Layer,” Ph.D. thesis, Yale University, New Haven, CT.

4. Log Laws or Power Laws: The Scaling in Overlap Region;Zagarola;Phys. Fluids

5. Further Observations on Mean Velocity Distribution in Fully Developed Pipe Flow;McKeon;J. Fluid Mech.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3