Comprehensive Studies on Hot Compaction and Vibration-Assisted Compaction Tests of Aluminum Powder

Author:

Zhou Qiang1,Song Shutao1,Chen Quanfang23,Bai Yuanli1

Affiliation:

1. Department of Mechanical and Aerospace of Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816

2. Department of Mechanical and Aerospace of Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816;

3. MEMS and Nanomaterials Lab, University of Central Florida, Orlando, FL 32816

Abstract

Abstract Aluminum powder compaction was studied using both test and simulation. Cold compaction, hot compaction, and vibration-assisted (cold) compaction tests were conducted to achieve different density ratios. First, the hot compaction test (at 300 °C, compression pressure 140 MPa) improved about 6% compared with cold compaction under the same compression pressure. Second, although the relative density ratio does not obviously improve at a vibration-assisted (cold) compaction, the strength of the specimens made under vibration loading is much better than those of cold compaction. Additionally, finite element models with well-calibrated Drucker–Prager Cap (DPC) material constitutive model were built in abaqus/standard to simulate the powder compaction process. The results of the finite element model have very good correlations with test results up to the tested range, and this finite element model further predicts the loading conditions needed to achieve the higher density ratios. Two exponential equations of the predicted density ratio were obtained by combining the test data and the simulation results. A new analytical solution was developed to predict the axial pressure versus the density ratio for the powder compaction according to DPC material model. The results between the analytical solution and the simulation model have a very good match.

Funder

Department of Energy

University of Central Florida

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3