Numerical Modeling and Validation of Supersonic Two-Phase Flow of CO2 in Converging-Diverging Nozzles

Author:

Yazdani Miad1,Alahyari Abbas A.,Radcliff Thomas D.2

Affiliation:

1. e-mail:

2. Thermal and Fluid Sciences Department, United Technologies Research Center, East Hartford, CT 06108

Abstract

Carbon dioxide is an attractive alternative to conventional refrigerants due to its low direct global warming effects. Unfortunately, CO2 and many alternative refrigerants have lower thermodynamic performance resulting in larger indirect emissions. The effective use of ejectors to recover part of the lost expansion work, which occurs in throttling devices, can close this performance gap and enable the use of CO2. In an ejector, the pressure of the motive fluid is converted into momentum through a choked converging-diverging nozzle, which then entrains and raises the energy of a lower-momentum suction flow. In a two-phase ejector, the motive nozzle flow is complicated by the nonequilibrium phase change affecting local sonic velocity and leading to various types of shockwaves, pseudo shocks, and expansion waves inside or outside the exit of the nozzle. Since the characteristics of the jet leaving the motive nozzle greatly affect the performance of the ejector, this paper focuses on the details of flow development and shockwave interaction within and just outside the nozzle. The analysis is based on a high-fidelity model that incorporates real-fluid properties of CO2, local mass and energy transfer between phases, and a two-phase sonic velocity model in the presence of finite-rate phase change. The model has been validated against the literature data for two-phase supersonic nozzles and overall ejector performance data. The results show that due to nonequilibrium effects and delayed phase change, the flow can choke well downstream of the minimum-area throat. In addition, Mach number profiles show that, although phase change is at a maximum near the boundaries, the flow first becomes supersonic in the interior of the flow where sound speed is lowest. Shock waves occurring within the nozzle can interact with the boundary layer flow and result in a ‘shock train’ and a sequence of subsonic and supersonic flow previously observed in single-phase nozzles. In cases with lower nozzle back pressure, the flow continues to accelerate through the nozzle and the exit pressure adjusts in a series of supersonic expansion waves.

Publisher

ASME International

Subject

Mechanical Engineering

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3