In-Process Detection of Tool Breakage in Milling

Author:

Lan Ming-Shong1,Naerheim Yngve1

Affiliation:

1. Rockwell International Science Center, Thousand Oaks, CA 91360

Abstract

An adaptive signal processing scheme for the cutting force signal was used to detect the fracture and chipping of a cutting tool during milling operation. The cutting force signal was modeled by a discrete autoregressive model where parameters were estimated recursively at each sampling instant using a parameter adaptation algorithm based on a model reference adaptive system approach. The sensitivity of the prediction error and the estimated parameters to the frature and chipping of a cutting tool are presented. The influence of the adaptation algorithm parameters on the estimation results is discussed. The effect of the change in cutting conditions on the estimation results is also investigated.

Publisher

ASME International

Subject

General Medicine

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Operational modal analysis based dynamic parameters identification in milling of thin-walled workpiece;Mechanical Systems and Signal Processing;2022-03

2. ON-LINE MONITORING OF TOOL WEAR AND SURFACE ROUGHNESS BY ACOUSTIC EMISSIONS IN CNC TURNING;International Journal of Robotics and Automation;2011

3. Cutter tool fault detection using a new spectral analysis method;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2010-06-23

4. Grey–Taguchi method to optimize the milling parameters of aluminum alloy;The International Journal of Advanced Manufacturing Technology;2007-12-11

5. Machine tool condition monitoring using sweeping filter techniques;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2007-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3