Use of the Generalized Impulse Momentum Equations in Analysis of Wave Propagation

Author:

Gau Wei-Hsin1,Shabana A. A.2

Affiliation:

1. Department of Mechanical Engineering, Huafan Institute of Technology, Taipei, Taiwan R.O.C.

2. Department of Mechanical Engineering, University of Illinois at Chicago, P.O. Box 4348, Chicago, IL 60680

Abstract

A procedure is developed in this paper to study the propagation of impact-induced axial waves in constrained beams that undergo large rigid body displacements. The solution of the wave equations is obtained using the Fourier method. Kinematic conditions that describe mechanical joints in the system are formulated using a set of nonlinear algebraic constraint equations that are introduced to the dynamic formulation using the vector of Lagrange multipliers. The initial conditions which represent the jump discontinuity in the elastic coordinates as the result of impact are predicted using the generalized impulse momentum equations that involve the coefficient of restitution as well as the Jacobian matrix of the kinematic constraints. The convergence of the series solutions presented in this paper is examined and the analytical and numerical results are found to be consistent with the solutions obtained by the use of the classical theory of elasticity in the case of plastic impact. The cases in which the coefficient of restitution is different from zero are also examined and it is shown that the generalized impulse momentum equations can be used with confidence to study the propagation of elastic waves in applications related to multibody dynamics.

Publisher

ASME International

Subject

General Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modal Methods for Contact Analysis and Contact Force Reconstruction;Nonlinear Dynamics, Volume 1;2017

2. Modeling of Impact in Multibody Systems: An Overview;Journal of Computational and Nonlinear Dynamics;2012-08-31

3. Vibration analysis of drillstrings with string—borehole interaction;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2008-11-01

4. Modal Analysis to Accommodate Slap in Linear Structures;Journal of Vibration and Acoustics;2005-12-09

5. Impact dynamics of flexible-joint robots;Computers & Structures;2005-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3