Electrical Impedance Matching of PZT NanoGenerators

Author:

Galos Richard1,Shi Yong1,Ren Zhongjing1,Sun Hao1

Affiliation:

1. Stevens Institute of Technology, Hoboken, NJ

Abstract

PZT nanofibers are piezoelectric and can produce a relatively high electrical output under strain that is useful for self-powered nanogenerators. To obtain maximum power output from these devices, their internal impedance needs to be matched with their applicable load impedance. Electrical impedance measurements of PZT nanofibers were performed using a variety of methods over a frequency spectrum ranging from DC to 3.0 GHz. These methods include Conductive AFM and Scanning Microwave Impedance Microscopy. Nanofibers formed by electro-spinning with diameters ranging from 3 to 150 nm were collected and measured. The nanofiber impedance was extremely high at low frequency, decreased considerably at higher frequency and varied with nanofiber diameter as well. The results are applicable for the analysis of many types of nanogenerators and nanosensors including those produced at Stevens.

Publisher

American Society of Mechanical Engineers

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Submillimeter-scale Flexible Micro-catheters Driven by Shape Memory Alloys for Vascular Interventions;2023 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO);2023-07-31

2. A shape memory alloy spring driven soft crawling robot with feet of constant curvature;Journal of Intelligent Material Systems and Structures;2023-06-27

3. A novel approach to solar sails with high area-to-mass ratios for efficient solar sailing in geospace;2023 2nd International Symposium on Aerospace Engineering and Systems (ISAES);2023-05-19

4. Design and Experiment on a Novel SMA Driven Micro-catheter for Active Navigation in Vascular Interventions;2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO);2022-08-08

5. Current divisions and distributed Joule heating of two-dimensional grid microstructures;Microsystem Technologies;2020-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3