A Pressure Modulating Sensorized Soft Actuator Array for Pressure Ulcer Prevention

Author:

Carrigan Wei1,Nuthi Pavan1,Pande Charu1,Nothnagle Caleb P.1,Wijesundara Muthu B. J.1

Affiliation:

1. University of Texas at Arlington, Fort Worth, TX

Abstract

Pressure ulcers are a serious reoccurring complication among wheelchair users with impaired mobility and sensation. It is postulated that external mechanical loading, specifically on bony prominences, is a major contributing factor in pressure ulcer formation. Prevention strategies mainly center on reducing the magnitude and duration of external forces acting upon the body. Seat cushion technologies for reducing pressure ulcer prevalence often employ soft materials and customized cushion geometries. Air cell arrays used in time-based pressure modulation techniques are seen as a promising alternative; however, this approach could be further enhanced by adding real-time pressure profile mapping to enable automated pressure modulation customizable for each user’s condition. The work presented here describes the development of a prototype support surface and pressure modulation algorithm which can monitor interface pressure as well as automatically offload and redistribute concentrated pressure. This prototype is comprised of arrays of sensorized polymeric soft air cell actuators which are modulated by a pneumatic controller. Each actuator’s pressure can be changed independently which results in a change to the interface pressure allowing us to offload targeted regions and provide local adjustment for redistribution. The pressure mapping, redistribution, and offloading capabilities of the prototype are demonstrated using pressure modulation algorithms described here.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Testing of Pressure Ulcers Preventive Bed for Neonates in Neonatal Intensive Care Units;IEEE Transactions on Medical Robotics and Bionics;2023-05

2. Design and Control of a Reclining Chair with Soft Pneumatic Cushions;Advances in Service and Industrial Robotics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3