Affiliation:
1. University of Texas at Arlington, Fort Worth, TX
Abstract
Pressure ulcers are a serious reoccurring complication among wheelchair users with impaired mobility and sensation. It is postulated that external mechanical loading, specifically on bony prominences, is a major contributing factor in pressure ulcer formation. Prevention strategies mainly center on reducing the magnitude and duration of external forces acting upon the body. Seat cushion technologies for reducing pressure ulcer prevalence often employ soft materials and customized cushion geometries. Air cell arrays used in time-based pressure modulation techniques are seen as a promising alternative; however, this approach could be further enhanced by adding real-time pressure profile mapping to enable automated pressure modulation customizable for each user’s condition. The work presented here describes the development of a prototype support surface and pressure modulation algorithm which can monitor interface pressure as well as automatically offload and redistribute concentrated pressure. This prototype is comprised of arrays of sensorized polymeric soft air cell actuators which are modulated by a pneumatic controller. Each actuator’s pressure can be changed independently which results in a change to the interface pressure allowing us to offload targeted regions and provide local adjustment for redistribution. The pressure mapping, redistribution, and offloading capabilities of the prototype are demonstrated using pressure modulation algorithms described here.
Publisher
American Society of Mechanical Engineers
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献