Affiliation:
1. Mechanical Engineering Department, Southern Methodist University, Dallas, TX 75275
Abstract
A general approach based on discrete mapping techniques is presented to study stability of bipedal locomotion. The approach overcomes difficulties encountered by others on the treatment of discontinuities and nonlinearities associated with bipedal gait. A five-element bipedal locomotion model with proper parametric formulation is considered to demonstrate the utility of the proposed approach. Changes in the stability of the biped as a result of bifurcations in the four-dimensional parameter space are investigated. The structural stability analysis uncovered stable gait patterns that conform to the prescribed motion. Stable nonsymmetric locomotion with multiple periodicity was also observed, a phenomenon that has never been considered before. Graphical representation of the bifurcations are presented for direct correlation of the parameter space with the resulting walking patterns. The bipedal model includes some idealizations such as neglecting the dynamics of the feet and assuming rigid bodies. Some additional simplifications were performed in the development of the controller that regulates the motion of the biped.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献