Data Privacy Preserving for Centralized Robotic Fault Diagnosis With Modified Dataset Distillation

Author:

Wang Tao111,Huang Yu111,Liu Ying2,Chen Chong3

Affiliation:

1. Guangdong University of Technology Guangdong Provincial Key Laboratory of Cyber-Physical System, , Guangzhou 510006 , China ; School of Automation, , Guangzhou 510006 , China

2. Cardiff University Department of Mechanical Engineering, School of Engineering, , Cardiff CF24 3AA , UK

3. Guangdong University of Technology Guangdong Provincial Key Laboratory of Cyber-Physical System, , Guangzhou 510006 , China

Abstract

Abstract Industrial robots generate monitoring data rich in sensitive information, often making enterprises reluctant to share, which impedes the use of data in fault diagnosis modeling. Dataset distillation (DD) is an effective approach to condense large dataset into smaller, synthesized forms, focusing solely on fault-related features, which facilitates secure and efficient data transfer for diagnostic purposes. However, the challenge of achieving satisfactory fault diagnosis accuracy with distilled data stems from the computational complexity in data distillation process. To address this problem, this article proposes a modified KernelWarehouse (MKW) network-based DD method to achieve accurate fault diagnosis with the distilled dataset. In this algorithm, DD first generates distilled training and testing dataset, followed by the training of an MKW-based network based on these distilled datasets. Specifically, MKW reduces network complexity through the division of static kernels into disjoint kernel cells, which are then computed as linear mixtures from a shared warehouse. An experimental study based on the real-world robotic dataset reveals the effectiveness of the proposed approach. The experimental results indicate that the proposed method can achieve a fault diagnosis accuracy of 86.3% when only trained with distilled data.

Funder

National Natural Science Foundation of China

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3