A Reduction Procedure for One-Dimensional Joint Models and Application to a Lap Joint

Author:

Guthrie Michael A.1,Kammer Daniel C.1

Affiliation:

1. Department of Engineering Physics, University of Wisconsin, Madison, WI 53706

Abstract

A reduction procedure for joint models that was developed in earlier work is extended to allow for relative motion between surfaces, and the effect of this procedure on timestep issues is considered. A general one-dimensional structure containing a frictional interface is considered. Coulomb friction is approximated with nonlinear springs of large but finite stiffness. The system of equations describing this structure is reduced in a procedure similar to Guyan reduction by assuming that the system deforms only in the shapes that it takes when the interface is massless. The result of this procedure is that the dynamics associated with the interface region are removed from the analysis. Following the development of the reduction procedure, the reduced formulation is specialized to the case of a simple lap joint. A numerical example problem is considered in which both the full and reduced equations of motion are integrated over time. It is seen that, for the example problem considered, the reduction procedure results in tremendous computational savings with little loss of accuracy. Based on the results of the simple example problem, it appears that the proposed reduction procedure has potential to be an accurate and effective method of alleviating the timestep difficulties associated with direct finite element analysis of joints in structural dynamics applications.

Publisher

ASME International

Subject

General Engineering

Reference31 articles.

1. Damping in Structural Joints;Beards;Shock Vib. Dig.

2. Gregory, D. L., and Martinez, D. R., 2001, “On the Development of Methodologies for Constructing Predictive Models of Structures With Joints and Interfaces,” Sandia National Laboratories, Technical Report No. SAND2001-0003P.

3. Dohner, J. L. , 2000, “A Reduced Order, One Dimensional Model of Joint Response,” Sandia National Laboratories, Technical Report No. SAND2000-2753C.

4. The Role of Friction in Mechanical Joints;Gaul;Appl. Mech. Rev.

5. Substructure Synthesis via Elastic Media Part I: Joint Identification;Liu

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3