Effect of Blowing Ratio on Mist-Assisted Air Film Cooling of a Flat Plate: An Experimental Study

Author:

Pabbisetty Mallikarjuna Rao1,Prasad B. V. S. S. S.1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Madras, Adyar, Chennai 600036, Tamil Nadu, India

Abstract

Abstract A novel mist-assisted air film cooling scheme is proposed by Li and Wang (2006, “Simulation of Film Cooling Enhancement With Mist Injection,” ASME J. Heat Transfer, 128, pp. 509–519) to increase the film cooling effectiveness of a gas turbine cooled vane/blade. This scheme is further investigated experimentally in this article to determine the effect of the blowing ratio. The coolant is made to pass through the film holes on a flat plate mounted in a test facility. Tiny water droplets, characterized by Rosin-Rammler mean diameter of about 36.7 μm measured with a phase Doppler particle analyzer (PDPA) system is introduced into the cooling air. The effectiveness values are evaluated by measuring the plate surface temperature with the infrared (IR) camera. The maximum percentage of the mist-assisted film cooling effectiveness is 26% more than air film cooling effectiveness when 2.1% of mist is added to the air. In addition, the coolant coverage on the plate is found to be much better with mist cooling in both the streamwise and the spanwise directions. The net enhancement due to the mist-assisted air film cooling effectiveness (Δη) decreases with the increasing values of the blowing ratio in the range of 0.55–2.58 at a density ratio of 2.2.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3