Impact of Intensity of Residual Stress Field Upon Re-Yielding and Re-Autofrettage of an Autofrettaged Thick Cylinder

Author:

Parker Anthony P.1,Underwood John H.2,Troiano Edward2

Affiliation:

1. University of Cranfield, Swindon, UK

2. Benet Labs, Watervliet, NY

Abstract

Re-autofrettage has been identified as a significant, cost-effective method to achieve higher re-yield pressure (RYP) and/or weight reduction in large caliber gun tubes. For a given overstrain, residual stress profiles for hydraulic and for swage autofrettage may differ significantly in their intensity. The simplest representation of this ‘intensity’ effect is the magnitude of the bending moment ‘locked in’ via the residual hoop stress. Hill’s analytical, plane strain, Von Mises, analysis predicts a larger ‘locked-in’ moment than does the equivalent open-end condition. By assuming a range of stress-field intensities (f) scaleing from 1.0 to 1.4 times that produced by open-end hydraulic autofrettage, it was possible to assess re-yield behavior following initial autofrettage via a generic numerical study. In cases where Bauschinger effect is absent, re-yield initiates at the original elastic plastic interface. This includes the ideal Hill distribution. When Bauschinger effect is present, re-yield for f ≤ 1.1 initiates at the bore and after further pressurization at the original elastic plastic interface within two zones. For f ≥ 1.2 the reverse is the case, with initial yield at the original elastic plastic interface and subsequently at the bore. RYP increases with increasing f up to f = 1.175 and then decreases significantly. This loss of RYP may be mitigated by hydraulic re-autofrettage. At f = 1.0 re-autofrettage increases RYP by 4%. At f = 1.4 RYP is increased by 19%. There are modest increases in safe maximum pressure as a result of re-autofrettage. RYP closely approaching re-autofrettage pressure is achievable for f ≥ 1.3. Within this range, re-autofrettage offers a significant benefit. Re-autofrettage also produces beneficial effects via increased bore hoop compressive stress, this increase varying from 20% for f = 1 to zero for f = 1.4. Such increased compression will benefit fatigue lifetime for fatigue cracks initiating at the bore. Conversely, tensile OD hoop stress increases, with increasing f, by a maximum of 6%.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stress and Stress Intensity Factor Near Notches in Thick Cylinders;Journal of Pressure Vessel Technology;2012-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3