Control of Rotor Tip Leakage Through Cooling Injection From the Casing in a High-Work Turbine

Author:

Behr Thomas1,Kalfas Anestis I.2,Abhari Reza S.3

Affiliation:

1. Turbomachinery Laboratory, ETH Zurich, CH-8092 Zurich, Switzerland

2. Department of Mechanical Engineering, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

3. Turbomachinery Laboratory, ETH Zurich, CH-8092 Zurich, Switzerland

Abstract

This paper presents an experimental investigation of a novel approach for controlling the rotor tip leakage and secondary flow by injecting cooling air from the stationary casing onto the rotor tip. It contains a detailed analysis of the unsteady flow interaction between the injected air and the flow in the rotor tip region and its impact on the rotor secondary flow structures. The experimental investigation has been conducted on a one-and-1/2-stage, unshrouded turbine, which has been especially designed and built for the current investigation. The turbine test case models a highly loaded, high pressure gas turbine stage. Measurements conducted with a two-sensor fast-response aerodynamic probe have provided data describing the time-resolved behavior of flow angles and pressures, as well as turbulence intensity in the exit plane of the rotor. Cooling air has been injected in the circumferential direction at a 30 deg angle from the casing tangent, opposing the rotor turning direction through a circumferential array of ten equidistant holes per rotor pitch. Different cooling air injection configurations have been tested. Injection parameters such as mass flow, axial position, and size of the holes have been varied to see the effect on the rotor tip secondary flows. The results of the current investigation show that with the injection, the size and the turbulence intensity of the rotor tip leakage vortex and the rotor tip passage vortex reduce. Both vortices move toward the tip suction side corner of the rotor passage. With an appropriate combination of injection mass flow rate and axial injection position, the isentropic efficiency of the stage was improved by 0.55 percentage points.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3