Flow and Heat Transfer Characteristics of a Natural Circulation Evaporative Cooling System for Electronic Components

Author:

Honda Hiroshi1,Zhang ZhengGuo2,Takata Nobuo1

Affiliation:

1. Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580, Japan

2. Chemical Engineering Research Institute, South China University of Technology, Guangzhou 510640, China

Abstract

Experiments were conducted to study the flow and heat transfer characteristics of a natural circulation liquid cooling system for electronic components. The test loop consisted of a horizontal test section, a horizontal evaporator, a vertical tube, a horizontal condenser, a rubber bag attached at the exit of the condenser, a downcomer, a mass flow meter, and a liquid subcooler. The loop height H was set at either 250 or 450 mm. FC-72 was filled in the test loop up to some level of loop height and the upper part was filled with air. During the operation of the cooling system, the rubber bag expanded and stored the mixture of generated vapor and air. Thus the inner pressure was maintained at atmospheric pressure. In the test section, a silicon chip with dimensions of 10×10×0.5 mm3 was attached at the bottom surface of a horizontal duct with dimensions of 10×14 mm2. A smooth chip and four chips with square micro-pin-fins with 150 to 300 μm in fin height were tested. The duct height s was set at 10 mm for most of the experiments. The cases of s=1 and 25 mm were also tested for one of the micro-pin-finned chips. For each H, the average flow rate of FC-72 was correlated well as a function of the static pressure difference between the two vertical tubes. All chips showed the boiling curve similar to that for pool boiling except that the critical heat flux was lower for the natural circulation loop. For all chips tested, the maximum allowable heat flux qmax increased monotonically with increasing liquid subcooling ΔTsub. Comparison of the results for s=1, 10 and 25 mm revealed that the highest qmax was obtained with s=10 mm. The values of qmax for s=1 and 25 mm were 36–46% and 87–90% of that for s=10 mm, respectively. The maximum value of qmax=56 W/cm2 was obtained by one of the micro-pin-finned chips at s=10 mm and ΔTsub=35 K.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference21 articles.

1. Bar-Cohen, A. , 1983, “Thermal Design of Immersion Cooling Modules for Electronic Components,” Heat Transfer Eng. ,4, pp. 35–50.

2. Simons, R. E. , 1995, “The Evolution of IBM High Performance Cooling Technology,” IEEE Trans. Compon., Packag. Manuf. Technol., Part A, 18, pp. 805–811.

3. Fairbanks, D. R., Goltsos, C. E., and Mark, M., 1967, “The Submerged Condenser,” ASME Publication 67-HT-15, ASME/AIChE National Heat Transfer Conference.

4. Markowitz, A., and Bergles, A. E., 1972, “Operational Limits of Submerged Condenser,” Progress in Heat and Mass Transfer, Vol. 6, pp. 701–716, Pergamon Press, Oxford.

5. Bravo, H. V., and Bergles, A. E., 1976, “Limits of Boiling Heat Transfer in a Liquid-Filled Enclosure,” Proc. 24th HTFMI, pp. 114–127.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3