Reconstruction and Analysis of the Acoustic Transfer Matrix of a Reheat Flame From Large-Eddy Simulations

Author:

Bothien Mirko1,Lauper Demian2,Yang Yang3,Scarpato Alessandro3

Affiliation:

1. Ansaldo Energia, Römerstrasse 36, Baden CH-5400, Switzerland e-mail:

2. Ansaldo Energia, Römerstrasse 36, Baden CH-5400, Switzerland

3. Ansaldo Energia, Römerstrasse 36, Baden CH-5400, Switzerland

Abstract

Lean premix technology is widely spread in gas turbine combustion systems, allowing modern power plants to fulfill very stringent emission targets. These systems are, however, also prone to thermoacoustic instabilities, which can limit the engine operating window. The thermoacoustic analysis of a combustor is thus a key element in its development process. An important ingredient of this analysis is the characterization of the flame response to acoustic fluctuations, which is straightforward for lean-premixed flames that are propagation stabilized, since it can be measured atmospherically. Ansaldo Energia's GT26 and GT36 reheat combustion systems feature a unique technology where fuel is injected into a hot gas stream from a first combustor, which is propagation stabilized, and auto-ignites in a sequential combustion chamber. The present study deals with the flame response of mainly auto-ignition stabilized flames to acoustic and temperature fluctuations for which a computational fluid dynamics system identification (SI) approach is chosen. The current paper builds on recent works, which detail and validate a methodology to analyze the dynamic response of an auto-ignition flame to extract the flame transfer function (FTF) using unsteady large-Eddy simulations (LES). In these studies, the flame is assumed to behave as a single-input single-output (SISO) or a multi-input single-output (MISO) system. The analysis conducted in GT2015-42622 qualitatively highlights the important role of temperature and equivalence ratio fluctuations, but these effects are not separated from velocity fluctuations. Hence, this topic is addressed in GT2016-57699, where the flame is treated as a multiparameter system and compressible LES are conducted to extract the frequency-dependent FTF to describe the effects of axial velocity, temperature, equivalence ratio, and pressure fluctuations on the flame response. For lean-premixed flames, a common approach followed in the literature assumes that the acoustic pressure is constant across the flame and that the flame dynamics are governed by the response to velocity perturbations only, i.e., the FTF. However, this is not necessarily the case for reheat flames that are mainly auto-ignition stabilized. Therefore, in this paper, we present the full 2 × 2 transfer matrix of a predominantly auto-ignition stabilized flame, and hence, describe the flame as a multi-input multi-output (MIMO) system. In addition to this, it is highlighted that in the presence of temperature fluctuations, the 2 × 2 matrix can be extended to a 3 × 3 matrix relating the primitive acoustic variables as well as the temperature fluctuations across the flame. It is shown that only taking the FTF is insufficient to fully describe the dynamic behavior of reheat flames.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3