Lithium-Ion Battery State of Charge and Critical Surface Charge Estimation Using an Electrochemical Model-Based Extended Kalman Filter

Author:

Di Domenico Domenico1,Stefanopoulou Anna2,Fiengo Giovanni3

Affiliation:

1. Institut Français du Pétrole (IFP), IFP Energies Nouvelles, Rond-Point de l’échangeur de Solaize, B.P. 3, 69360 Solaize, Lyon, France

2. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2121

3. Dipartimento di Ingegneria, Università degli Studi del Sannio, Piazza Roma 21, 82100 Benevento, Italy

Abstract

This paper presents a numerical calculation of the evolution of the spatially resolved solid concentration in the two electrodes of a lithium-ion cell. The microscopic solid concentration is driven by the macroscopic Butler–Volmer current density distribution, which is consequently driven by the applied current through the boundary conditions. The resulting, mostly causal, implementation of the algebraic differential equations that describe the battery electrochemical principles, even after assuming fixed electrolyte concentration, is of high order and complexity and is denoted as the full order model. The full order model is compared with the results in the works of Smith and Wang (2006, “Solid-State Diffusion Limitations on Pulse Operation of a Lithium-Ion Cell for Hybrid Electric Vehicles,” J. Power Sources, 161, pp. 628–639) and Wang et al. (2007 “Control oriented 1D Electrochemical Model of Lithium Ion Battery,” Energy Convers. Manage., 48, pp. 2565–2578) and creates our baseline model, which will be further simplified for charge estimation. We then propose a low order extended Kalman filter for the estimation of the average-electrode charge similarly to the single-particle charge estimation in the work of White and Santhanagopalan (2006, “Online Estimation of the State of Charge of a Lithium Ion Cell,” J. Power Sources, 161, pp. 1346–1355) with the following two substantial enhancements. First, we estimate the average-electrode, or single-particle, solid-electrolyte surface concentration, called critical surface charge in addition to the more traditional bulk concentration called state of charge. Moreover, we avoid the weakly observable conditions associated with estimating both electrode concentrations by recognizing that the measured cell voltage depends on the difference, and not the absolute value, of the two electrode open circuit voltages. The estimation results of the reduced, single, averaged electrode model are compared with the full order model simulation.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3