Spatially Resolved Droplet Size Measurements

Author:

Jackson T. A.1,Samuelsen G. S.1

Affiliation:

1. UCI Combustion Laboratory, Department of Mechanical Engineering, University of California, Irvine, Calif. 92717

Abstract

This paper encompasses initial tests of a droplet sizing technique, providing spatially and temporally resolved measurements within a liquid spray from an air assist nozzle. The method utilizes laser interferometry. The primary size measurement is based upon the signal visibility; it is validated by the peak intensity of the scattered light. As the system is based on the Doppler effect, a single component of velocity is extracted concurrent with the size information. The size of the measurement volume is controlled with off-axis light collection. Beam splitting is accomplished with a rotating diffraction grating, allowing the signal to be frequency shifted. Measurements are compared directly to those of a standard diffraction based sizing system (i.e., Malvern). The diffraction information is processed via Rosin-Rammler (2 parameter) and Model Independent (15 parameter) distribution algorithms. Correspondence between diffraction and interferometric results is satisfactory for the Model Independent algorithm. Differences observed using the Rosin-Rammler distribution are attributed to an inadequate representation of the spray by the two parameter model.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Turbulence Modulation in a Simplex Spray;Proceedings of the Seventh International Conference on Liquid Atomization and Spray Systems;2023

2. Preliminary Development of a Measurement Reference Using a Research Simplex Atomizer;Journal of Fluids Engineering;2019-07-12

3. Approach for particle sizing using DPIV;SPIE Proceedings;2000-08-31

4. DROPLET TRANSPORT IN SIMPLEX AND AIR-ASSISTED SPRAYS;Atomization and Sprays;1996

5. Spatially Resolved Measurements of Size and Velocity Distributions of Aerosol Droplets from a Direct Injection Nebulizer;Applied Spectroscopy;1993-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3