A Hybrid Decision-Making Method for the Selection of a Phase Change Material for Thermal Energy Storage

Author:

Gaddala Uma Maheswararao1,Devanuri Jaya Krishna1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology, Warangal 506004, Telangana, India

Abstract

Abstract Phase change materials (PCMs) are considered to be promising contenders for thermal energy storage (TES) due to their high latent heat and nearly constant temperature during the intake/release of heat. The present study focuses on providing the most suitable PCM for low-temperature (40–80 °C) heat storage applications. However, the selection of the most suitable one from the wide range of PCMs for an application needs a thorough insight of their thermophysical properties, thermal stability, compatibility, and melting and solidification behavior. Among the PCMs available for low-temperature heat storage applications, organic PCMs stand as an attractive option. Based on melting point temperature, latent heat, cost, and ease of availability, five widely used organic PCMs, viz., lauric acid (LA), myristic acid (MA), stearic acid (SA), paraffin wax (PW), and palmitic acid (PA), are selected. Initially, thermophysical properties are measured and tabulated. Subsequently, thermal stability experiments up to 1500 melting/freezing cycles, compatibility studies with container materials (aluminum and stainless steel (SS)), and melting and solidification experiments giving total melting and solidification times are performed. Further, a hybrid multiple attribute decision-making (MADM) method is employed to select the best PCM based on the obtained experimental results. During the selection process at first, the subjective weights of the attributes are measured according to the analytical hierarchy process (AHP). Later, the PCMs are ranked based on the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The hybrid MADM results show that among the selected PCMs, paraffin wax is the optimal PCM for low-temperature heat storage applications.

Funder

Department of Science and Technology

Science and Engineering Research Board (SERB), India

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3