Finite Element Investigation of Quasi-Static Crack Growth in Functionally Graded Materials Using a Novel Cohesive Zone Fracture Model

Author:

Jin Z.-H.1,Paulino G. H.1,Dodds, R. H.1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Newmark Laboratory, MC-250, 205 North Mathews Avenue, Urbana, IL 61801

Abstract

This work studies mode I crack growth in ceramic/metal functionally graded materials (FGMs) using three-dimensional interface-cohesive elements based upon a new phenomenological cohesive fracture model. The local separation energies and peak tractions for the metal and ceramic constituents govern the cohesive fracture process. The model formulation introduces two cohesive gradation parameters to control the transition of fracture behavior between the constituents. Numerical values of volume fractions for the constituents specified at nodes of the finite element model set the spatial gradation of material properties with standard isoparametric interpolations inside interface elements and background solid elements to define pointwise material property values. The paper describes applications of the cohesive fracture model and computational scheme to analyze crack growth in compact tension, C(T), and single-edge notch bend, SE(B), specimens with material properties characteristic of a TiB/Ti FGM. Young’s modulus and Poisson’s ratio of the background solid material are determined using a self-consistent method (the background material remains linear elastic). The numerical studies demonstrate that the load to cause crack extension in the FGM compares to that for the metal and that crack growth response varies strongly with values of the cohesive gradation parameter for the metal. These results suggest the potential to calibrate the value of this parameter by matching the predicted and measured crack growth response in standard fracture mechanics specimens.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference27 articles.

1. Hirai, T., 1996, “Functionally Gradient Materials,” Materials Science and Technology: Processing of Ceramics, Part 2, R. J. Brook eds., VCH Verlagsgesellschaft mbH, Weinheim, Germany, 17B, pp. 292–341.

2. Koizumi, M., 1993, “The Concept of FGMs,” Ceramic Transactions: Functionally Graded Materials, J. B. Holt, M. Koizumi, T. Hirai, and Z. Munir, eds., American Ceramic Society, Westerville, OH, 34, pp. 3–10.

3. Suresh, S., and Mortensen, A., 1998, Functionally Graded Materials, The Institute of Materials, IOM Communications, London.

4. Dugdale, D. S. , 1960, “Yielding of Steel Sheets Containing Slits,” J. Mech. Phys. Solids, 8, pp. 100–104.

5. Hillerborg, A., Modeer, M., and Petersson, P. E., 1976, “Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements,” Cement Concrete Res, 6, pp. 773–782.

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3