Modeling Particle Spray and Capture Efficiency for Direct Laser Deposition Using a Four Nozzle Powder Injection System

Author:

Katinas Christopher1,Shang Weixiao1,Shin Yung C.2,Chen Jun1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 e-mail:

2. Fellow ASME School of Mechanical Engineering, Purdue University, West Lafayette 47907 e-mail:

Abstract

Powder capture efficiency is indicative of the amount of material that is added to the substrate during laser additive manufacturing (AM) processes, and thus, being able to predict capture efficiency provides capability of predictive modeling during such processes. The focus of the work presented in this paper is to create a numerical model to understand particle trajectories and velocities, which in turn allows for the prediction of capture efficiency. To validate the numerical model, particle tracking velocimetry (PTV) experiments at two powder flow rates were conducted on free stream particle spray to track individual particles such that particle concentration and velocity fields could be obtained. Results from the free stream comparison showed good agreement to the trends observed in experimental data and were subsequently used in a direct laser deposition (DLD) simulation to assess capture efficiency and temperature profile at steady-state. The simulation was validated against a single track deposition experiment and showed proper correlation of the free surface geometry, molten pool boundary, heat affected zone boundary, and capture efficiency.

Funder

Directorate for Engineering

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3