New Results on Robot Modeling and Simulation

Author:

Celentano Laura1,Iervolino Raffaele1

Affiliation:

1. Universitá degli Studi di Napoli, Federico II, Dipartimento di Informatica e Sistemistica, Via Claudio 21, I-80125, Napoli, Italy

Abstract

In this paper the possibility of simulating the robot forward dynamics by making use of the inertia matrix and of the kinetic energy gradient only is demonstrated. Such method is shown to be simpler and numerically more efficient than the classical approaches. In the case of planar robots with revolute joints and link centers of mass belonging to the plane containing the rotating axes of the joints, theorems are formulated and demonstrated providing a relatively fast and simple method of calculation for both the inertia matrix and the gradient of the kinetic energy. This allows obtaining a simple and efficient tool to simulate practical robots with rigid links and can also be particularly useful for studying robots with flexible links. By using the proposed approach, the model of a practical planar robot, designed by the computer aided design software package CATIA™, is easily developed and implemented. The simulation results when the gradient of the kinetic energy is computed analytically versus numerically are compared to illustrate that the computational costs are relatively low and the accuracy is high.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference14 articles.

1. Dynamic Behavior of Spatial Linkages;Uicker;ASME J. Eng. Ind.

2. Computer Simulation of the Dynamics of Complicated Mechanisms of Robot Manipulators;Vereshchagin;Eng. Cybern.

3. Efficient Dynamic Computer Simulation of Robotic Mechanisms;Walker;ASME J. Dyn. Syst., Meas., Control

4. Robot Dynamics: Equations and Algorithms;Featherstone

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3