Discovering Sequenced Origami Folding Through Nonlinear Mechanics and Topology Optimization

Author:

Gillman Andrew S.12,Fuchi Kazuko34,Buskohl Philip R.2

Affiliation:

1. UES, Inc., Beavercreek, OH 45432;

2. Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433

3. Applied Mechanics Division, University of Dayton Research Institute, Dayton, OH 45469;

4. Air Force Research Laboratory, Wright-Patterson AFB, OH 45433

Abstract

Origami folding provides a novel method to transform two-dimensional (2D) sheets into complex functional structures. However, the enormity of the foldable design space necessitates development of algorithms to efficiently discover new origami fold patterns with specific performance objectives. To address this challenge, this work combines a recently developed efficient modified truss finite element model with a ground structure-based topology optimization framework. A nonlinear mechanics model is required to model the sequenced motion and large folding common in the actuation of origami structures. These highly nonlinear motions limit the ability to define convex objective functions, and parallelizable evolutionary optimization algorithms for traversing nonconvex origami design problems are developed and considered. The ability of this framework to discover fold topologies that maximize targeted actuation is verified for the well-known “Chomper” and “Square Twist” patterns. A simple twist-based design is also discovered using the verified framework. Through these case studies, the role of critical points and bifurcations emanating from sequenced deformation mechanisms (including interplay of folding, facet bending, and stretching) on design optimization is analyzed. In addition, the performance of both gradient and evolutionary optimization algorithms are explored, and genetic algorithms (GAs) consistently yield solutions with better performance given the apparent nonconvexity of the response-design space.

Funder

Air Force Office of Scientific Research

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3