Affiliation:
1. Department of Mechanical and Industrial Engineering, University of Illinois, Urbana, IL 61801
2. Graduate Aeronautical Laboratory, California Institute of Technology, Pasadena, CA 91125
Abstract
Current methodologies used for the inference of thin film stress through system curvature measurements are strictly restricted to stress and curvature states which are assumed to remain uniform over the entire film/substrate system. Recently Huang, Rosakis, and co-workers [Acta Mech. Sinica, 21, pp. 362–370 (2005); J. Mech. Phys. Solids, 53, 2483–2500 (2005); Thin Solid Films, 515, pp. 2220–2229 (2006); J. Appl. Mech., in press; J. Mech. Mater. Struct., in press] established methods for the film/substrate system subject to nonuniform misfit strain and temperature changes. The film stresses were found to depend nonlocally on system curvatures (i.e., depend on the full-field curvatures). These methods, however, all assume uniform substrate thickness, which is sometimes violated in the thin film/substrate system. Using the perturbation analysis, we extend the methods to nonuniform substrate thickness for the thin film/substrate system subject to nonuniform misfit strain.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献