Kinematic Modeling and Optimization of a Clustered Tensegrity Mobile Robot

Author:

Yang Qi1,Liu Xinyu1,Yu Ze1,Lian Binbin1,Sun Tao1

Affiliation:

1. Tianjin University Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, , Tianjin 300350 , China

Abstract

Abstract Clustered tensegrity mechanisms have elicited extensive attention in recent research due to their easy control system and high stiffness-to-mass ratio. However, modeling and analyzing these mechanisms are still challenging due to the clustering of cables and redundant structural parameters. This article proposes an energy-based kinematic modeling method for a modular clustered tensegrity mobile robot. The design of the clustered tensegrity robot is inspired by the biomechanics of worms, allowing it to achieve two locomotion modes resembling earthworm-like and inchworm-like movements using two motors. Moreover, the clustered and modular structure enables the robot to increase the number of modules as needed without increasing the number of actuators. This feature enhances the robot's terrain adaptability without adding complexity to the control system. The article establishes kinematic models using the energy method and clarifies the motion law of nodes on the sliding cables of the robot, considering multiple structural parameters for both locomotion modes. Based on these models, the article reveals the mapping relationships among various structural parameters (i.e., cable-hole gap, cable-hole friction, stiffness and original length of elastic cables, and ground–robot friction) and locomotion performance (i.e., morphology, displacement, and velocity) of the robot. Furthermore, structural parameter optimization is performed to enhance the kinematic performance of the robot in both locomotion modes simultaneously. To validate the proposed kinematic modeling method, a prototype with two modules is developed, and experiments are conducted to assess the robot's locomotion performance. These experiments demonstrate the effectiveness and rationality of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3