Numerical Simulation of Proppant Placement in Scaled Fracture Networks

Author:

Song Y.1,Dahi Taleghani A.1

Affiliation:

1. Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802

Abstract

Abstract While hydraulic fracturing is recognized as the most effective stimulation technique for unconventional reservoirs, the production enhancement is influenced by several factors including proppant placement inside the fractures. The goal of this work is to understand the proppant transport and its placement process in T-shaped fracture network through simulations. The proppant transport is studied numerically by coupling a computational fluid dynamic model for the base shear-thinning fluid and the discrete element methods for proppant particles. A scaling analysis has been performed to scale down the model from field scale to lab scale by deriving relevant dimensionless parameters. Different proppant size distributions and injection velocities are considered, as well as the friction and cohesion effects among particle and fracture surface. The simulation results show that in the primary fracture, the injected proppant could divide into three layers: the bottom sand bed zone, the middle rolling surface zone, and the top slurry flow zone. The total number of the proppants do not increase much after the dune reach an equilibrium height. The equilibrium height of sand dune in the minor fracture could be greater than the primary fracture, and the distribution of proppant dunes is symmetric. Two deposit mechanisms have also identified in the bypass fracture network: falling deposition and rolling deposition. Additionally, significant momentum changes due to the change in the flow direction at the intersection with natural fractures is identified as a potential factor in accelerating particle deposition.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference21 articles.

1. Water-Fracs: We Do Need Proppant After all;Britt,2006

2. The Mechanics of Sand Movement in Fracturing;Kern;J. Pet. Technol.,1959

3. Experimental and Numerical Modeling of Convective Proppant Transport. JPT;Barree;J. Pet. Technol.,1995

4. Large-Scale Laboratory Investigation of the Effects of Proppant and Fracturing-Fluid Properties on Transport;Brannon,2006

5. Bi-Power Law Correlations for Sediment Transport in Pressure Driven Channel Flows;Wang;Int. J. Multiphase Flow,2003

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3