Multizone Porous Medium Model of Thermal/Fluid Processes During Discharge of an Inclined Rectangular Storage Vessel Via an Immersed Heat Exchanger

Author:

Su Yan1,Davidson Jane H.1

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota, 111 Church Street Southeast, Minneapolis, Minnesota 55455

Abstract

The transient natural convective thermal/fluid processes during discharge of an inclined rectangular solar storage tank via an immersed heat exchanger are modeled and compared to prior experimental data. The model treats the heat exchanger as a porous medium within the storage fluid and is applicable to a wide range of tank/heat exchanger configurations. In the present study, a two-dimensional model is applied to discharge of a 126l storage tank inclined at 30deg with respect to the horizontal and with a height to width ratio of 9:1. The heat exchanger has 240 tubes arranged in parallel and is located near the top of the tank. Transient temperature distributions and flow streamlines demonstrate the complexity of the flow field and the extent of mixing during discharge. The predicted results compare favorably to prior measurements of heat transfer and temperature distribution.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference39 articles.

1. Solar Heating Systems for Houses

2. Combistores;Streicher

3. Thermal Penalty of an Immersed Heat Exchanger in Integral Collector Storage Systems;Arora;ASME J. Sol. Energy Eng.

4. Status of the Development of Polymeric Solar Water Heating Systems;Davidson

5. Design and Development of a Low Cost ICS Solar Water Heater;Bourne

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3