A Critical Evaluation of NOx Modeling in a Model Combustor

Author:

Jiang Lei-Yong1,Campbell Ian1

Affiliation:

1. Gas Turbine Environmental Research Center, Institute for Aerospace Research, National Research Council Canada, 1200 Montreal Road, M-10, Ottawa, Ontario, Canada, K1A 0R6 Tel.: 613-993-9235

Abstract

Reliable NOx modeling depends on the accurate prediction of both velocity and temperature fields. The velocity and temperature fields of a propane diffusion flame combustor, with interior and exterior conjugate heat transfers, were first numerically studied. The results from three combustion models, together with the renormalization group (RNG) k-ε turbulence model and the discrete ordinates radiation model are discussed, and compared with comprehensive experimental measurements. The flow patterns and the recirculation zone length in the combustion chamber are excellently predicted, and the mean axial velocities are in fairly good agreement with the experimental data for all three combustion models. The mean temperature profiles are fairly well captured by the probability density function (PDF) and eddy dissipation (EDS) combustion models. However, the EDS-finite-rate combustion model fails to provide an acceptable temperature field. Based on the acceptable velocity and temperature fields, a number of NO modeling approaches were evaluated in a postprocessing mode. The partial-equilibrium approach of O and OH radical concentrations shows a significant effect on the thermal NO formation rate. In contrast, the prompt NO, the NO reburn mechanism and the third reaction of the extended Zeldovich mechanism have negligible effects on the overall NO formation in the present study. This study indicates that the semiempirical, postprocessing NO model can provide valuable NO simulations as long as the velocity and temperature fields are adequately predicted.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of alumina nanoparticles on evaporation and combustion characteristics of diesel fuel droplets;Journal of the Taiwan Institute of Chemical Engineers;2023-02

2. An alternative approach to evaluate fuel/air mixing quality;The Aeronautical Journal;2021-05-14

3. Spray combustion characteristics of a small-sized flue gas self-circulation diesel burner;IOP Conference Series: Earth and Environmental Science;2019-03-30

4. Thermal and emission characteristics of reverse air flow CAN combustor;International Journal of Thermal Sciences;2018-06

5. RANS Modelling of Turbulence in Combustors;Turbulence Modelling Approaches - Current State, Development Prospects, Applications;2017-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3