Molecular Mechanisms Underlying the Effect of Paeoniae Radix Rubra on Sepsis-Induced Coagulopathy: A Network Pharmacology and Molecular Docking Approach

Author:

Gao Shan1,Wang Dongsheng1

Affiliation:

1. Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University , No. 87 Xiangya Road, Hunan Province, Changsha 410008, China

Abstract

Abstract To investigate the effective components and underlying mechanism of Paeoniae radix rubra (PRR) in treating sepsis-induced coagulopathy (SIC) on the basis of network pharmacology and molecular docking approaches. At present, no therapeutic agent has been approved for the treatment of SIC. Identifying drugs for SIC from Chinese medicine is an encouraging research direction. The predicted targets and effective components of PRR were identified by analysis of the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Bio-informatics databases were employed to identify the disease targets of SIC. These key targets were then uploaded to the STRING database to generate protein–protein interaction networks. The ORG package in rv4.1.2 software was applied for functional and pathway enrichment analyses of the key targets. Finally, discovery studio software was used to perform docking analyses of key targets and effective components. Nine chemically active components and 84 common targets associated with drugs and SIC were identified. Protein–protein interaction (PPI) network analysis identified several key targets. Further analysis identified enrichment in several signaling pathways; these changes could exert influence on a number of biological processes, including responses to xenobiotic stimuli, oxidative stress, molecules of bacterial origin, thus playing an anti-SIC pharmacological role. According to molecular docking results, these key targets had strong binding affinity to the active components. PRR can contribute to SIC by medicating core target genes (e.g., CASP3, PTGS2, TP53, AKT1, MMP9, TNF, JUN, IL6, and CXCL8), and regulating multiple key pathways (e.g., the lipid and atherosclerosis pathway).

Funder

Central South University

Publisher

ASME International

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3