Experimental Validation of the Addition Principle for Pulsating Flow in Close-Coupled Catalyst Manifolds

Author:

Persoons Tim1,Hoefnagels Ad2,Van den Bulck Eric1

Affiliation:

1. Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, B-3001 Leuven, Belgium

2. BOSAL International, Advanced Engineering and Testing, Lummen, Belgium

Abstract

Designing an exhaust manifold with close-coupled catalyst (CCC) relies heavily on time-consuming transient computional fluid dynamics. The current paper provides experimental validation of the addition principle for pulsating flow in CCC manifolds. The addition principle states that the time-averaged catalyst velocity distribution in pulsating flow equals a linear combination of velocity distributions obtained for steady flow through each of the exhaust runners. A charged motored engine flow rig provides cold pulsating flow in the exhaust manifold featuring blow down and displacement phases, typical of fired engine conditions. Oscillating hot-wire anemometry is used to measure the bidirectional velocity, with a maximum measurable negative velocity of −1m∕s. In part load and zero load conditions, instantaneous reverse flow occurs following the blow-down phase. The two-stage nature of the exhaust stroke combined with strong Helmholtz resonances results in strong fluctuations of the time-resolved mean catalyst velocity. The validity of the addition principle is quantified based on the shape and magnitude similarity between steady and pulsating flow distributions. Appropriate nondimensional groups are used to characterize the flow and quantify the similarity. Statistical significances are provided for the addition principle’s validity. The addition principle is valid when the nondimensional scavenging number S exceeds a critical value Scrit, corresponding to cases of low engine speed and/or high flow rate. This study suggests that the CCC manifold efficiency with respect to catalyst flow uniformity could be quantified using a single scalar parameter, i.e., Scrit. The results from the current study are discussed with respect to previously reported results. The combined results are in good agreement and provide a thorough statistically founded experimental validation of the addition principle, based on a broad applicability range.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3