Quantifying the Direct Influence of Diffusive Mass Transfer in Rarefied Gas Mixing Simulations

Author:

Darbandi Masoud1,Sabouri Moslem2

Affiliation:

1. Department of Aerospace Engineering, Center of Excellence in Aerospace Systems, Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-11155, Tehran 14588-89694, Iran e-mail:

2. Department of Aerospace Engineering, Center of Excellence in Aerospace Systems, Sharif University of Technology, Tehran 14588-89694, Iran e-mail:

Abstract

This work utilizes the direct simulation Monte Carlo (DSMC) calculations and examines the influence of rarefication on the mixing length and effective diffusion coefficient in a two-species mixing problem. There have been efforts in past rarefied mixing flow studies to bridge between the mixing evolution rate and Knudsen number. A careful review of those efforts shows that the past derived relations did not determine the weights of Reynolds (or Peclet) number in the rarefaction influences. Although they indicated that an increase in Knudsen would decrease the mixing length, such reductions were primarily due to the Reynolds (or Peclet) reduction. Therefore, those studies could not explicitly appraise the contribution of rarefaction in the total mass diffusion magnitude. This work focuses specifically on the role of rarefaction in the total diffusive mass transfer magnitude in rarefied gas mixing problems. It excludes the contributions of momentum and heat to the mass diffusion via imposing suitable velocity, pressure, and temperature fields in the mixer domain. The results show that there will be some decreases in the diffusive mass fluxes and some increases in the mixing length as Knudsen increases. Using the Fick’s law, the effective diffusion coefficient is then calculated in the mixer zone. The results show that this coefficient may vary considerably throughout the mixer zone due to the local rarefaction level variation. The results of all investigated cases indicate that the trends of their effective diffusion coefficient variations approach to a limiting value as the rarefaction level decreases.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3