Affiliation:
1. Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada
Abstract
An important design decision for active trailer steering (ATS) systems for articulated heavy vehicles (AHVs) is the trade-off between maneuverability and lateral stability. This paper presents an automated design method for this trade-off. The proposed method has the following features: (1) a design framework for bilevel optimization of ATS systems is formulated; (2) design variables of ATS controllers and trailers are optimized simultaneously; (3) two controllers are designed for the ATS system for improving stability and enhancing maneuverability, respectively; and (4) a driver model is introduced in the virtual vehicle simulation for closed-loop testing maneuvers. The design framework allows automation of vehicle modeling, controller construction, performance evaluation, and design variable selection, and all required design processes are implemented in a single loop. The proposed method is compared to a previously published two-loop design method, showing that the new approach can effectively identify desired variables and predict performance envelopes.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献