The Effects of Oxygen Enrichment of Combustion Air for Spark-Ignition Engines Using a Thermodynamic Cycle Simulation

Author:

Caton Jerald A.1

Affiliation:

1. Texas A&M University, College Station, TX

Abstract

A thermodynamic cycle simulation was used to examine the effects of oxygen enriched combustion air on engine performance for a range of operating conditions and for different sized engines. The use of oxygen enriched combustion air will have a direct effect on the combustion process and on the overall engine thermodynamics. For example, for cases with higher inlet oxygen concentration (and hence less nitrogen dilution), for the same operating conditions, the combustion gas temperatures and engine cylinder heat losses will be higher. In addition, the engine using oxygen enriched combustion air will be smaller than an engine using normal air for the same power output. The major objective of this study was to quantify these expectations for a range of operating conditions. One special feature of a portion of the current study is the constant engine power output by decreasing engine size as the oxygen concentration increased in the combustion air. Results include detail thermodynamic results of temperatures, pressures and properties as functions of the oxygen concentration of the combustion air. Results also include engine performance parameters such as power, torque, fuel consumption, thermal efficiency, and exhaust temperatures. For one comparison, engine performance and fuel consumption were obtained for an equivalence ratio of 1.0, MBT spark timing, and 2500 rpm. For oxygen enriched combustion air with 32% oxygen, equal power output was obtained with 73% of the displaced volume (all else the same). For the higher oxygen case, the brake fuel consumption increased about 11% primarily due to higher heat losses and higher exhaust gas energy which were a consequence of the higher gas temperatures. For the MBT spark timing case, the nitric oxide emissions increased by about 11% as the oxygen concentration increases from 21% to 25%.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3