Performance Investigation of a Triangular Solar Air Heater Duct Having Broken Inclined Roughness Using Computational Fluid Dynamics

Author:

Jain Sheetal Kumar1,Agrawal Ghanshyam Das2,Misra Rohit3,Verma Prateek3,Rathore Sanjay3,Jamuwa Doraj Kamal3

Affiliation:

1. Department of Mechanical Engineering, Malaviya National Institute of Technology, Jaipur 302017, India e-mails: ;

2. Department of Mechanical Engineering, Malaviya National Institute of Technology, Jaipur 302019, India e-mail:

3. Department of Mechanical Engineering, Government Engineering College, Ajmer 305002, India e-mail:

Abstract

Large-scale adaptation of solar air heating in industries and agro-processing will lead to clean energy processing as well as reducing the production cost for these industries. The solar air heater uses the principle of the greenhouse effect to heat air through the collected heat in the absorber. Among the various techniques employed by the researchers to augment heat transfer, the addition of artificial roughness elements/fins/corrugations on the heated surface is the promising one for heat transfer augmentation. In the present work, the effect of broken inclined ribs with rectangular cross-section on heat transfer and friction characteristics of the equilateral triangular passage duct has been analyzed using computational fluid dynamics. The effect of roughness parameters, viz., relative gap position and relative gap width, is being investigated for the Reynolds number (Re) ranging from 4000 to 18,000. The values of relative gap position (d/W) and relative gap width (g/e) are varied from 0.16 to 0.67 and 0.5 to 2, respectively, while a constant heat flux is supplied on the absorber side, other surfaces being insulated. The Nusselt number increased up to 2.16 times by using broken ribs than that of the smooth duct at d/W = 0.25 and g/e = 1.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3