Site Specific Optimization of Rotor/Generator Sizing of Wind Turbines

Author:

Martin Kirk A.1,Schmidt Michael F.1,Shelton Sam V.1,Stewart Susan W.1

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA

Abstract

Economics, including all incentives, is the primary factor that drives the development of wind farms. Optimizing the wind turbine generator size-to-rotor size design based on an economic figure of merit shows that maximum wind turbine capacity factor does not yield the best economics for a given wind resource. A large rotor on a small generator will have a high capacity factor but a low annual output of electrical energy. For the same capital investment a different configuration would produce more electricity making the project more economically sound. This study varied rotor-to-generator size at a fixed capital cost and used a modified blade element momentum model to predict annual electrical energy production for each design at a given wind resource. Optimal design was the design that resulted in the highest annual electrical energy production. This was done at a series of fixed costs and a series of wind resources defined by the Weibull distribution parameters. The results indicated the following: At larger turbine sizes, (higher capital cost per turbine), the economics shifted toward a larger generator and smaller rotor (relatively). This exact relationship is dependent on the wind resource. At large turbine sizes, greater flexibility is shown in optimum generator sizing vs. rotor sizing. Having multiple generator size options for the same rotor size allows developers to more closely match and capitalize on the characteristics of their wind resource. The end result of the research is a set of diagrams developers can use to select the best turbine based on economics for their wind resource. This provides an additional tool they can use to make their projects more cost effective.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3